G. I. Eremeeva, B. Kh. Strelets, and L. S. Éfros

UDC 547.794.3.07

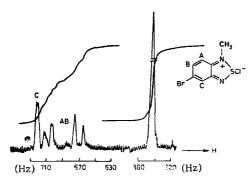


Fig. 1. PMR spectrum of 5-bromo-1-methyl-2,1,3-benzothiadiazolium chloride at 100 MHz (Varian Ha-100) in trifluoroacetic acid with cyclohexane as the internal standard.

We have found the reaction of thionyl chloride or selenious acid with N-methyl-o-phenylenediamines gives 1-methyl-2,1,3-benzothia(selena)diazolium salts I and II.

$$\begin{array}{c} CH_3 \\ R^2 \\ N \end{array} \qquad \begin{array}{c} CH_3 \\ R^2 \\ \end{array} \qquad \begin{array}{c} CH_3 \\ N \end{array} \qquad \begin{array}{c} CH_3 \\ R^2 \\ \end{array} \qquad \begin{array}{c} CH_3 \\ N \end{array} \qquad \begin{array}{c} CH_3 \\ N$$

The structures of the compounds were unambiguously proved by means of the PMR spectra, in which multiplets of aromatic protons and singlets of protons of N-methyl groups are observed. A typical spectrum of I is presented in Fig. 1. Analysis of the spectrum gives ortho and meta spin—spin coupling constants of 9.4 and 1.4 Hz, respectively; the para coupling constant was not recorded in the spectrum.

EXPERIMENTAL

5-Bromo-1-methyl-2,1,3-benzothiadiazolium Chloride. A 1.2-ml sample of thionyl chloride was added to 0.85~g of N_1 -methyl-p-bromo-o-phenylenediamine in 10~ml of dry benzene, and the reaction mixture was refluxed for 2~h. The resulting precipitate was removed by filtration, dried, and recyrstallized from methanol.

5-Bromo-1-methyl-2,1,3-benzoselenadiazolium Chloride. A 0.5-g sample of selenious acid was added to 0.76 g of N_1 -methyl-p-bromo-o-phenylenediamine dihydrochloride in 15 ml of glacial acetic acid, and the resulting precipitate was removed by filtration, dried, and recrystallized from methanol.

TABLE 1. 1-Methyl-2,1,3-benzothia(selena)thazolium Salts

Com-	1	1	mp (dec.),	Empirical	L Foun	Found, %		Calculated.%	
pound	Rı	R ²	°C	formula	N	CI+Br		CI+Br	Yield,
II	Н	CI	158—159 185—187	C ₇ H ₆ Cl ₂ N ₂ S C ₇ H ₆ Cl ₂ N ₂ Se	12,5 10,6	32,4 26,6	12,7 10,4	32,1 26,5	83 68
I II	Cl	H	188—189 200—202	C ₇ H ₆ Cl ₂ N ₂ S C ₇ H ₆ Cl ₂ N ₂ Se	12,8 10,3	29,9 26,7	12,7 10,4	32,1 26,5	77 85
I II	Н	Br	143—145 182—183	C ₇ H ₆ BrClN ₂ S C ₇ H ₆ BrClN ₂ Se	10,7 8,7	43,6 36,8	10,6 9,0	43,4 36,9	74 79
I II	Br	Н	185—186 196—197	C₁H₀BrClN₂S C₁H₀BrClN₂Se	10,7 8,7	43,3 37,2	10,6 9,0	43,4 36,9	72 87
I II	Н	CH ₈	179—181 199—200	C ₈ H ₉ ClN ₂ S C ₈ H ₉ ClN ₂ Se	14,1 11,6	17,9 14,2	14,0 11,3	17,7 14,3	91 69
I II	CH ₃	H	180—181 206—208	C ₈ H ₉ ClN ₂ S C ₈ H ₉ ClN ₂ Se	13,8 11,0	17,6 14,1	14,0 11,3	17,7 14,3	73 64
I II	Н	CH₃O	149—150 180—181	C ₈ H ₉ ClN ₂ OS C ₈ H ₉ ClN ₂ OSe	12,7 10,4	16,6 13,3	12,9 10,6	16,4 13,4	73 79
II	CH₃O	Н	163—164 195—196	C ₈ H ₉ ClN ₂ OS C ₈ H ₉ ClN ₂ OSe	13,2 10,6	16,5 13,6	12,9 10,6	16,4 13,4	96 89

Leningrad Branch, All-Union Scientific-Research Institute of Synthetic Fibers. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 276-277, February, 1975. Original article submitted July 2, 1974.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.